
Journal of Computational Physics 204 (2005) 666–691

www.elsevier.com/locate/jcp
A parallel nonlinear additive Schwarz preconditioned
inexact Newton algorithm for incompressible

Navier–Stokes equations q

Feng-Nan Hwang a, Xiao-Chuan Cai b,*

a Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
b Department of Computer Science, University of Colorado, Campus Box 430, Boulder, CO 80309-0430, USA

Received 20 August 2003; received in revised form 1 October 2004; accepted 19 October 2004

Available online 23 November 2004
Abstract

A nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN) was introduced recently for solving

large sparse highly nonlinear systems of equations obtained from the discretization of nonlinear partial differential

equations. In this paper, we discuss some extensions of ASPIN for solving steady-state incompressible Navier–Stokes

equations with high Reynolds numbers in the velocity–pressure formulation. The key idea of ASPIN is to find the solu-

tion of the original system by solving a nonlinearly preconditioned system that has the same solution as the original

system, but with more balanced nonlinearities. Our parallel nonlinear preconditioner is constructed using a nonlinear

overlapping additive Schwarz method. To show the robustness and scalability of the algorithm, we present some

numerical results obtained on a parallel computer for two benchmark problems: a driven cavity flow problem and a

backward-facing step problem with high Reynolds numbers. The sparse nonlinear system is obtained by applying a

Q1 � Q1 Galerkin least squares finite element discretization on two-dimensional unstructured meshes. We compare

our approach with an inexact Newton method using different choices of forcing terms. Our numerical results show that

ASPIN has good convergence and is more robust than the traditional inexact Newton method with respect to certain

parameters such as the Reynolds number, the mesh size, and the number of processors.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Incompressible Navier–Stokes equations; Nonlinear preconditioning; Inexact Newton; Nonlinear additive Schwarz;

Domain decomposition; Parallel computing
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.10.025

q The research was supported in part by the Department of Energy, DE-FC02-01ER25479, and in part by the National Science

Foundation, CCR-0219190, ACI-0072089 and CCF-0305666.
* Corresponding author. Fax: +1 303 492 2844.

E-mail address: cai@cs.colorado.edu (X.-C. Cai).

mailto:cai@cs.colorado.edu

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 667
1. Introduction

The focus of this paper is to develop a fast, scalable and robust parallel iterative algorithm and software

for solving large, sparse, nonlinear systems of equations arising from the finite element discretization of

steady-state incompressible Navier–Stokes equations in the velocity–pressure formulation. Solving Na-
vier–Stokes equations numerically is important, since many applications in computational science and engi-

neering depend on it. Even though years of research have been spent on finding fast and reliable methods

for solving Navier–Stokes equations on very fine meshes for a wide range of Reynolds numbers, it remains

a difficult computing task due to certain characteristics of the equations that are yet to be fully understood

mathematically, such as the boundary layer at high Reynolds numbers. To resolve the details of the solu-

tion, high resolution meshes are often required, which implies large condition numbers of the resulting alge-

braic systems, and also implies the need for a large-scale parallel computer. Several classes of method exist

for incompressible Navier–Stokes equations, including projection type methods and multigrid type meth-
ods [14,20,31]. In this paper, we focus on the class of Newton methods because of their ease of implemen-

tation and applicability to general flows and geometry. Our algorithm does not require the splitting of any

variable or operator, and this makes it suitable for many other coupled nonlinear systems of PDEs.

The inexact Newton method (IN) is a popular technique for solving nonlinear systems, since it is easy to

implement, general-purpose and has a rapid convergence rate when the initial guess is near the desired solu-

tion [11,12,15]. One drawback of IN is that a good enough initial guess is often not easily obtainable, espe-

cially for high Reynolds number flows. It is well-known from numerical experience that the radius of

convergence for IN becomes smaller as the Reynolds number increases. As a result, IN often diverges, even
at moderate Reynolds numbers and with globalization techniques, such as a linesearch technique or a trust

region method [11,36]. To overcome this difficulty, several techniques have been proposed for finding a

good initial guess. For example, continuation methods are popular choices for solving high Reynolds num-

ber flow problems; see [22,24,25] and references therein. In general, continuation methods fall into three

categories: parameter continuation [1,23], mesh sequencing [29], and pseudo time stepping [8,26,27]. The

advantage of continuation is that the implementation is often relatively easy and robust. On the other hand,

we do not always have the criteria for determining the size of the incremental parameter, or the optimal size

of a coarse mesh, or the optimal choice of the time increment for each iteration. Alternately, to obtain the
convergence of IN for high Reynolds number flow problems, Shadid et al. [34] introduced an algorithm

based on an inexact Newton method with backtracking (INB). For theoretical discussions of INB, see

[15,16]. The key component of INB is the forcing term, which provides a criterion for determining the accu-

racy of the Jacobian solver during Newton iterations. Instead of using a constant forcing term throughout

the computation, INB becomes more robust and efficient if the forcing term is chosen adaptively based on

the nonlinear residual at the previous Newton step. The right combinations of the forcing term and certain

discretization parameters may lead to nice convergence even for high Reynolds numbers. However, numer-

ical experiments conducted by us and others [34] have showed that the selection of the forcing terms is quite
problem-dependent. In other words, the nonlinear solver may diverge because of a slight change of a prob-

lem parameter.

Recently, without employing any of the techniques discussed above, a more robust parallel algorithm,

namely a nonlinear additive Schwarz preconditioned inexact Newton method (ASPIN), was introduced

[5–7,27] for solving large sparse nonlinear systems of equations arising from the discretization of nonlinear

partial differential equations. ASPIN has been shown numerically to be more robust than INB for solving

some challenging flow problems such as incompressible Navier–Stokes equations in the velocity–vorticity

formulation [5,6] and a full potential flow problem [7]. The key idea of ASPIN is that we find the solution
of the original system F(x) = 0 by solving a nonlinearly preconditioned system FðxÞ ¼ 0 that has the same

solution, but with more balanced nonlinearities. In this paper, we propose a new version of ASPIN for solv-

ing incompressible Navier–Stokes equations in the primitive variable form. The sparse nonlinear system is

668 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
obtained by using a Galerkin least squares finite element (GLS) discretization [17,18] on two dimensional

unstructured meshes. The GLS formulation is derived from the standard Galerkin formulation by adding

the square of the residual of the momentum equations in each element. The additional term improves not

only the numerical stability of the standard Galerkin method for high Reynolds number flows, but also pre-

serves the accuracy. A re-scaling step is added to the ASPIN algorithm in [5] to make the algorithm more
suitable for the primitive variable Navier–Stokes equations, which can be used to model many different

flows.

This paper is organized as follows. In the next section, we describe the incompressible Navier–Stokes

equations and their discretization using the GLS formulation. Then, Section 3 briefly reviews an inexact

Newton method with backtracking for solving nonlinear systems of equations. Section 4 describes the

details of ASPIN for the incompressible Navier–Stokes equations. Section 5 presents numerical results

obtained on a parallel computer for two benchmark problems: a lid-driven cavity flow problem [20]

and a backward-facing step problem [19,21]. We compare our approach with the well-understood,
Newton–Krylov–Schwarz (NKS) algorithm [4,27,34]. Finally, conclusions and some remarks are given

in Section 6.
2. Incompressible Navier–Stokes equations and Galerkin least squares finite element discretization

Consider two-dimensional steady-state incompressible Navier–Stokes equations in the primitive variable

form [22,32]
u � ru� 2mr � �ðuÞ þ rp ¼ f in X;

r � u ¼ 0 in X;

u ¼ g on CD;

rn ¼ h on CN;

ð2:1Þ
where u = (u1,u2)
T is the velocity, p is the pressure, m is the dynamic viscosity, and �ðuÞ ¼ 1

2
½ðruÞ þ ðruÞT� is

the symmetric part of the velocity gradient. The Cauchy stress tensor r is defined as r = �pI + 2m�(u), where
I is a second-order identity tensor. For simplicity, in this paper the body force f = 0. Here we assume that X
is a bounded domain in R2 with a polygonal boundary C. Two types of boundary conditions are imposed:

Dirichlet conditions (CD) and Neumann conditions (CN). Note that if only the Dirichlet boundary is spec-
ified, i.e., CN = /, the pressure p is determined up to a constant. To make p unique, we impose an additional

condition
Z
X
pdx ¼ 0:
To discretize (2.1), we use a stabilized Q1 � Q1 finite element method ([22]) on a given conforming quad-
rilateral mesh Th ¼ fKg. For each element K we use hK to denote its diameter. Let Vh and Ph be a pair of

finite element spaces for the velocity and pressure, given by
V h ¼ fv 2 ðC0ðXÞ \ H 1ðXÞÞ2 : vjK 2 Q1ðKÞ
2
; K 2Thg;

Ph ¼ fp 2 C0ðXÞ \ L2ðXÞ : pjK 2 Q1ðKÞ; K 2Thg:
The weighting and trial velocity function spaces V h
0 and V h

g are defined as follows:
V h
0 ¼ fv 2 V h : v ¼ 0 on CDg and V h

g ¼ fv 2 V h : v ¼ g on CDg:
The 2-norm of v is defined as kvk2 ¼ ð
P2

i¼1jvij
2Þ1=2.

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 669
Similarly, let the finite element space Ph
0 be both the weighting and trial pressure function spaces:
Ph
0 ¼ p 2 Ph :

Z
X
pdx ¼ 0

� �
:

Following [17], the GLS finite element method for the steady-state incompressible Navier–Stokes equa-

tions reads: Find uh 2 V h
g and ph 2 Ph

0, such that
Bðuh; ph; v; qÞ ¼ F ðv; qÞ 8ðv; qÞ 2 V h
0 � Ph

0 ð2:2Þ

with
Bðu; p; v; qÞ ¼ ððruÞ � u; vÞ þ ð2m�ðuÞ; �ðvÞÞ � ðr � v; pÞ � ðr � u; qÞ
þ

X
K2Th

ððruÞ � uþrp � 2mr � �ðuÞ; sððrvÞ � v�rq� 2mr � �ðvÞÞÞK þ ðr � u; dr � vÞ
and
F ðv; qÞ ¼ ðh; vÞCN
:

We use the stabilization parameters d and s suggested in [17]. Let ReK(x) = iu(x)i2hK/(12 m) be an element

Reynolds number, which distinguishes the locally convection-dominated flow (ReK(x) P 1) from the locally

diffusion-dominated flow (06ReK(x) < 1). For convection-dominated elements, we use
d ¼ kkuðxÞk2hK and s ¼ hK
2kuðxÞk2
and for diffusion-dominated elements, we use
d ¼ kkuðxÞk22h2K
12m

and s ¼ h2K
6m

:

Therefore, for convection-dominated regions, s and d are O(h); for diffusion-dominated regions, s and d
are O(h2). Note that for a fixed mesh, d is a function of the velocity, and s is a function of the velocity for

convection-dominated regions, and is a constant for diffusion-dominated regions.

Remark 1. Franca and Frey [17] proved that the convergence of the GLS formulation holds for any
combination of interpolation functions for velocity and pressure. In the implementation, it is more

convenient to use equal-degree polynomials, such as Q1 � Q1 element, which are usually ruled out in the

standard Galerkin formulation because of the violation of the LBB condition.
Remark 2. For simplicity, we consider only rectangular bilinear Q1 � Q1 elements in this paper. The

viscous terms in the GLS formulation 2m$ Æ �(uh) and 2m$ Æ �(vh) vanish. Therefore, the stabilized term on

the left-hand side of the formulation (2.2) is reduced to
X
K

ððruÞ � uþrpÞ; sððrvÞ � v�rqÞÞÞK :
In this case, the GLS formulation and the Streamline-Upwind/Petrov–Galerkin (SUPG) formulation [3]

coincide.

Let x be a vector corresponding to the nodal values of uh and ph in (2.2), then the weighting functions

(uh,ph) and test functions (v,p) can be expressed in terms of finite element basis functions and the nodal

values. Substituting these four functions into the finite element weak form (2.2), we can write (2.2) as a non-

linear algebraic system
F ðxÞ ¼ 0; ð2:3Þ

670 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
which is often large, sparse and highly nonlinear when the Reynolds number is high. In our implementa-

tion, after ordering the mesh points, we number unknown nodal values in the order of uh1; uh2 and ph at each
mesh point. The mesh points are grouped subdomain by subdomain for the purpose of parallel processing.

More discussion on the subdomain partitioning will be given later. The components of the function F(x) are

ordered in the same fashion. In the rest of the paper, we focus on finding a solution of (2.3), starting from
an initial guess x(0).
3. Review of inexact Newton with backtracking

In this section, we review an inexact Newton method with backtracking technique (INB) for solving gen-

eral nonlinear systems of equations. INB will also serve as the basis of our new preconditioned inexact

Newton method.
Let x(0) be a given initial guess, and x(k) the current approximate solution. Then a new approximate solu-

tion x(k+1) of (2.3) can be computed by the following steps:

Algorithm 1. (Inexact Newton with Backtracking)

Step 1: Find an inexact Newton direction s(k) such that
kF ðxðkÞÞ � F 0ðxðkÞÞsðkÞk2 6 gkkF ðxðkÞÞk2:

Step 2: Compute a new approximate solution x(k+1) with backtracking
xðkþ1Þ ¼ xðkÞ � kðkÞsðkÞ:
In INB, the scalar gk is often called the ‘‘forcing term’’, which determines how accurately the Jacobian

system needs to be solved by some iterative methods, such as a Krylov subspace type method, GMRES [33].

If the chosen forcing terms are zero, the algorithm reduces to the exact Newton algorithm. On the other
hand, we can determine the forcing terms based on the information obtained from the previous Newton

iteration. Two common choices of forcing terms were suggested by Eisenstat and Walker [16]:

� Choice 1. Select any g02[0,1) and for k = 1,2, . . . , choose
gk ¼
kF ðxðkÞÞk2 � kF ðxðk�1ÞÞ � F 0ðxðk�1ÞÞsðk�1Þk2
�� ��

kF ðxðk�1ÞÞk2
: ð3:1Þ
� Choice 2. Given c 2 [0,1] and q 2 (1,2], select any g0 2 [0,1) and for k = 1,2, . . . , choose
gk ¼ c
kF ðxðkÞÞk2
kF ðxðk�1ÞÞk2

� �q

: ð3:2Þ
To avoid the initial gk becoming too small while the intermediate solution is still far away from a solu-

tion, two corresponding safeguards are also needed: For Choice 1 we replace gk by maxfgk; g
1þ

ffiffi
5
p

2

k�1 g, if
g

1þ
ffiffi
5
p

2

k�1 > 0:1, and for Choice 2 we replace gk by maxfgk; cgqk�1g, if g
q
k�1 > 0:1.

The step length, k(k) 2 [kmin,kmax] � (0,1), in Step 2 of Algorithm 1 is selected so that
f ðxðkÞ � kðkÞsðkÞÞ 6 f ðxðkÞÞ � akðkÞrf ðxðkÞÞTsðkÞ; ð3:3Þ
where the two parameters kmin and kmax are known as safeguards which are required for strong global con-

vergence, the merit function f: Rn! R is defined as kF ðxÞk22=2, and the parameter a is used to assure that

the reduction of f is sufficient. Here, a linesearch technique [11] is employed to determine the step length

k(k).

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 671
The Jacobian matrix F 0 is a key component in INB. In our implementation, we form F 0 as a sparse matrix

using a multi-colored forward finite difference method [9]. Some other techniques are also available for

approximating the Jacobian matrix, such as automatic differentiation and symbolic differentiation. We refer

to Chapter 7 of [30] for an overview of these methods. Alternatively, a matrix-free implementation of New-

ton–Krylov can be used to avoid the explicit computation of F 0. Interested readers may refer to [27] for a com-
plete survey of matrix-free Newton–Krylov methods as well as their applications in computational physics.
4. ASPIN algorithm for incompressible Navier–Stokes equations

When using INB directly in (2.3), very good results have been observed for themany cases. However, when

the Reynolds number is high, INB sometimes converges nicely, but sometimes, it does not converge for some

reasons that are not completely understood yet. In the rest of this section, we re-formulate the nonlinear sys-
tem (2.3) in the form of preconditioning, and then apply INB to the nonlinearly preconditioned system.

4.1. Nonlinear additive Schwarz preconditioning

We introduce the nonlinear preconditioner by defining four key components: the velocity and pressure

spaces associated with subdomains; the restriction and interpolation operators; the subdomain nonlinear

functions; and the subdomain correction operators. There are different ways to define a nonlinear precon-

ditioner, but here we consider only the additive Schwarz framework. We will show numerically in Section 5
that nonlinear additive Schwarz [10] is an excellent nonlinear preconditioner in the sense that it enhances

the robustness of INB for a wide range of Reynolds numbers and reduces the number of both linear and

nonlinear iterations.

To apply an overlapping domain decomposition method [35,37], we first partition the flow domain X
into non-overlapping subdomains Xi, i = 1, . . .,N. Then, we expand each subdomain Xi to obtain a larger

overlapping subdomain X0i with the boundary oX0i. We assume that Xi � X0i and oX0i does not cut any

elements of Th.

Now, we define the subdomain velocity space as
V h
i ¼ fvh 2 V h \ ðH 1ðX0iÞÞ

2
: vh ¼ 0 on oX0i n CNg
and the subdomain pressure space as
Ph
i ¼ fph 2 Ph \ L2ðX0iÞ : ph ¼ 0 on oX0i n Cg:
Both are subspaces of Vh and Ph, respectively, if we extend all subdomain functions to the whole domain

by zero. See Fig. 1 for an example of a subdomain mesh. Note that for Q1 � Q1 elements, we have three

degrees of freedom per interior node, two for the velocity and one for the pressure.
Let n be the total number of degrees of freedom associated with the space V h

g � Ph
0 and ni be the total

number of degrees of freedom associated with the subspace V h
i � Ph

i . Because of the overlap, we usually

have
PN

i¼1ni P n:
Let RX0i

: V h
g � Ph

0 ! V h
i � Ph

i be a restriction operator, which returns all degrees of freedom (both velocity

and pressure) associated with the subspace V h
i � Ph

i . RX0i
is an ni · n matrix with values either 0 or 1. The

multiplication of RX0i
with a vector does not involve any arithmetic operations, but does involve communi-

cation in a distributed-memory parallel implementation. Then, the interpolation operator RT
X0i

can be de-

fined as the transpose of RX0i
.

Using the restriction operator, we define the subdomain nonlinear function F X0i
: Rn ! Rni as
F X0i
¼ RX0i

F :

Γ

Γ

N

D

ΓI

Fig. 1. Subdomain velocity and pressure space. (�) denote pressure degrees of freedom and (�) denote velocity degrees of freedom.

Homogenous Dirichlet boundary conditions are imposed on the interior boundary CI for both u and p. On CD only u is given.

672 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
We next define the subdomain mapping functions, which in some sense play the role of subdomain pre-

conditioners. For any given x 2 Rn, T iðxÞ : Rn ! Rni is defined as the solution of the following subspace

nonlinear systems,
F X0i
ðx� RT

X0i
T iðxÞÞ ¼ 0; for ¼ 1; . . . ;N : ð4:1Þ
We impose here Dirichlet or Neumann conditions according to the original Eqs. (2.1) on the physical

boundaries. On artificial boundaries, we assume both u = 0 and p = 0. Similar boundary conditions were

used in [28] for the Stokes equations.

Throughout this paper, we assume that (4.1) is uniquely solvable. Using the subdomain mapping func-

tions, we introduce a new global nonlinear function
FðxÞ ¼
XN
i¼1

RT
X0i
T iðxÞ; ð4:2Þ
where FðxÞ is called the nonlinearly preconditioned F(x), and define a nonlinearly preconditioned system
FðxÞ ¼ 0: ð4:3Þ

For strong elliptic problems, it can be shown that the nonlinearly preconditioned system and

the original system have the same solution [5]. But for the incompressible Navier–Stokes equations,

we can not apply the theory of [5] directly. Alternatively, we will verify numerically, in Section

5.3.1, that the preconditioned nonlinear system (4.3) has the same solution as that of the original

system (2.3).

4.2. Computing the Jacobian of the preconditioned system

Several techniques are available for the construction and solving of the Jacobian problems. Some meth-
ods are matrix-free, and some need the explicit construction of the matrix. In our implementation, we

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 673
choose to construct the Jacobian of FðxÞ semi-explicitly. Since FðxÞ is defined implicitly in (4.1) and (4.2),

the Jacobian calculation is not as straightforward as that of F(x). Here, we describe a computable form of

the Jacobian matrix for the preconditioned system as suggested in [5].

Consider subdomain X0i. Let ðX0iÞ
c

be the complement of X0i in the domain X. We write

x ¼ ðxi; xci Þ; where xi ¼ RX0i
x and xci ¼ RðX0iÞc x. Here RðX0iÞc is a restriction matrix defined similarly as RX0i

.
From the definition (4.1) of Ti(x), we have
F X0i
ðxi � T iðxi; xci Þ; xci Þ ¼ 0: ð4:4Þ
Let yi = xi�Ti and zi ¼ ðyi; xci Þ. Then the global function can be rewritten as a function of zi:
F ðziÞ ¼ F ðyi; xci Þ:

Furthermore, we write the Jacobian matrix of the original nonlinear function F(x) in the form of
J ¼ oF
ozi

� �
n�n
or, in terms of yi and xci as
J ¼ oF
oyi

� �
RX0i
þ oF

oxci

� �
RðX0iÞc ;
since subdomains X0i and ðX0iÞ
c
do not overlap.

Similarly, let JX0i
ðziÞ be the Jacobian of the nonlinear function F(Æ) restricted to the subdomain X0i, i.e.,
JX0i
ðziÞ ¼

oF X0i

oyi

� �
ni�ni

:

Suppose that we want to evaluate the Jacobian of the preconditioned function, denoted as J, at the kth
Newton iteration, xðkÞ ¼ xðkÞi ; ðxci Þ

ðkÞ
� �

. Using (4.2), the Jacobian J can be calculated as follows:
J �F0 ¼
XN
i¼1

RT
X0i

oT i

ox

� �
:

We next derive an approximate formula for each oTi/ox. Now, taking the partial derivative of Eq. (4.4)

with respect to xi, we find that
oF X0i

oyi

� �
oyi
oxi

� �
¼ 0;
or, more precisely,
oF X0i

oyi

� �
IX0i �

oT i

oxi

� �
¼ 0:� �
Assuming
oFX0

i
oyi

is nonsingular, we obtain that� � � � � �

oT i

oxi
¼ IX0i ¼

oF X0i

oyi

�1 oF X0i

oyi
: ð4:5Þ
Here, IX0i is the ni · ni identity matrix. Next, we take the partial derivative of (4.4) with respect to xci to
obtain
�
oF X0i

oy

� �
oT i

oxc

� �
þ

oF X0i

oxc

� �
¼ 0:
i i i

674 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
Solving the above equation for oT i
oxci

� �
yields
oT i

oxci

� �
¼

oF X0i

oyi

� ��1 oF X0i

oxci

� �
: ð4:6Þ
Note that
oT i

ox

� �
ni�n
¼ oT i

oxi

� �
RX0i
þ oT i

oxci

� �
RðX0iÞc : ð4:7Þ
By substituting (4.5) and (4.6) into (4.7), we have
oT i

ox

� �
¼

oF X0i

oyi

� ��1
oF X0i

oyi

� �
RX0i
þ

oF X0i

oxci

� �
RðX0iÞc

	

¼

oF X0i

oyi

� ��1
RX0i

oF
oyi

� �
RX0i
þ oF

oxci

� �
RðX0iÞc

	

¼ ðJX0i

Þ�1RX0i
J : ð4:8Þ
Summing up (4.8) for all subdomains and evaluating x at x(k), we have a formula for the Jacobian of the

nonlinearly preconditioned function
J ¼
XN
i¼1

RT
X0i
ðJX0i
ðziÞÞ�1RX0i

h i
JðziÞ zi¼ðxðkÞi �T iðxðkÞÞ;ðxci Þ

ðkÞÞ

��� : ð4:9Þ
Although (4.9) is computable, in practice, it is more convenient to use the following approximation sug-

gested in [5]:
bJ ¼XN
i¼1

RT
X0i
ðJX0i
ðzÞÞ�1RX0i

h i
JðzÞ

���z¼xðkÞ : ð4:10Þ
Remark 3. Note that the subdomain preconditioner ðJX0iÞ
�1 corresponds to the solution of a discrete

Stokes-like problem using GLS formulation with homogenous Dirichlet boundary conditions for both the

velocity and pressure. In our implementation, JX0i is obtained from JX0i ¼ RX0i
JRT

X0i
, where J is constructed

using multi-colored forward finite difference methods.

Remark 4. Although each component of bJ is sparse, bJ itself is often dense and expensive to form explic-

itly. However, if a Krylov subspace method is used to solve the Jacobian problem, only the Jacobian-vector
product, u ¼ bJv, is required. In a distributed-memory parallel implementation, this operation consists of

four phrases:

1. Perform the matrix-vector multiply, w = Jv, in parallel.

2. On each subdomain, collect the data from the subdomain and its neighboring subdomains, wi ¼ RX0i
w.

3. Solve JX0i
ui ¼ wi using a sparse direct solver.

4. Send and receive partial solutions to and from its neighboring subdomains and then compute the sum,

u ¼
PN

i R
T
X0i
ui.
4.3. Details of ASPIN

Summarizing the discussions in Sections 4.1 and 4.2, we here describe the complete ASPIN algorithm for

solving incompressible Navier–Stokes equations. Let x(0) be an initial guess and x(k) the current approxi-
mate solution. Then a new approximate solution x(k+1) can be computed by the ASPIN algorithm as

follows:

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 675
Algorithm 2. (Additive Schwarz Preconditioned Inexact Newton)

Step 1: Evaluate the nonlinear residual FðxÞ at x(k) through the following steps:
1. Find wðkÞi ¼ T iðxðkÞÞ by solving, in parallel, the local subdomain nonlinear systems

GX0i
ðwÞ � F X0i

xðkÞ � RT
X0i
w

� �
¼ 0;
using INB with the initial guess w = 0.

2. Form the global residual

FðxðkÞÞ ¼
XN
i¼1

RT
X0i
wðkÞi :

3. Check the stopping condition on kFðxðkÞÞk2. If kFðxðkÞÞk2 is small enough, stop, otherwise,

continue.
Step 2: Evaluate pieces of the Jacobian matrix JðxÞ of the preconditioned system that are needed in order
to multiply (4.11) below with a vector in the next step. This includes J(x(k)) as well as JX0i

and its

sparse LU factorization.
bJ ¼XN
i¼1

RT
X0i
ðJX0i
ðxðkÞÞÞ�1RX0i

h i
JðxðkÞÞ: ð4:11Þ
Step 3: Find an inexact Newton direction s(k) by solving the following Jacobian system approximately

using a Krylov subspace method
bJsðkÞ ¼FðxðkÞÞ;

in the sense that
kFðxðkÞÞ � bJðxðkÞÞsðkÞk2 6 gkkFðxðkÞÞk2;
for some gk 2 [0,gmax] for some gmax < 1 independent of k.

Step 4: Scale the search direction sðkÞ Smax

ksðkÞk2
sðkÞ if is(k)i2 P Smax.

Step 5: Compute a new approximate solution
xðkþ1Þ ¼ xðkÞ � kðkÞsðkÞ;
where k(k) is a damping parameter determined by the standard backtracking procedure described in

(3.3).

Remark 5. At the kth global nonlinear iteration, local subdomain nonlinear systems
GX0i
ðwÞ ¼ 0; i ¼ 1; . . . ;N
need to be solved. We solve these subsystems using Newton�s method. During local nonlinear iterations, a

direct sparse solver, LU decomposition, is employed for solving each local Jacobian system.
Remark 6. No preconditioning is used in Step 3 of Algorithm 2. In fact, bJ can be viewed as the original

Jacobian system J preconditioned by a one-level additive Schwarz preconditioner. Hence, bJ is well-condi-
tioned through nonlinear preconditioning as long as the number of subdomains is not very large.

676 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
Remark 7. As suggested by Dennis and Schnabel in [11, p. 129], we include a re-scaling of the search direc-

tion s(k) in Step 4 if is(k)i2 P Smax. The purposes of this step length constraint are to avoid very large steps

during the calculation and to prevent the intermediate solution from leaving the domain of our interest. The

scalar Smax is provided by the user. In the next section, we will see that the re-scaling step plays an impor-

tant role in enhancing the robustness of ASPIN for solving incompressible Navier–Stokes equations, espe-
cially when Re is high. With careful choices of Smax, the efficiency of ASPIN can be improved as well.

Remark 8. One key issue of the backtracking technique is the selection of the merit function. For the

global nonlinear problem, we use f ðxÞ ¼ kFðxÞk22=2; for the local nonlinear problem, we use

f ðxÞ ¼ kF X0i
ðxÞk22=2.
5. Numerical results

In this section, we present a few numerical results using ASPIN to show its convergence properties,

robustness with respect to high Reynolds numbers, and parallel scalability. We also compare the results
with those obtained using a standard Newton–Krylov–Schwarz algorithm [4,27]. A lid-driven cavity flow

problem [20] and a backward-facing step problem [19] are considered here as benchmarks to evaluate

the performance of the algorithms. The implementation uses PETSc [2], and all numerical results are ob-

tained on a cluster of distributed-memory workstations. Double precision is used throughout the compu-

tation. A zero initial guess is used for all test cases. Only machine-independent results are reported. Timing

results will be reported in a future paper based on an optimized version of the current software.

5.1. Selection of parameters for ASPIN

ASPIN is a collection of several nested linear and nonlinear solvers and many stopping parameters are

involved. We summarize the parameters selected in our numerical experiments as follows:

� The global nonlinear iteration is stopped if the condition,
kFðxðkÞÞk2 6 eglobal-nonlinearkFðxð0ÞÞk2;

is satisfied. We set eglobal-nonlinear = 10�6 for all test cases, and the success of ASPIN is declared when the

above condition is satisfied.

� GMRES is used for solving the global Jacobian systems. The global linear iteration is stopped if the

condition,
kFðxðkÞÞ � bJðxðkÞÞsðkÞk2 6 eglobal-linearkFðxðkÞÞk2;

is satisfied. We vary eglobal-linear from 10�3 to 10�6 and find that the global Jacobian systems need to be
solved with a certain degree of accuracy, specifically no larger than 10�4, to guarantee the robustness and

efficiency of ASPIN for some cases. We also observe that less than 8% of linear iterations can be saved

for most cases using larger eglobal-linear. Therefore, to assure the convergence of ASPIN over a wide range

of applications, we select eglobal-linear = 10�6 for all test cases.

� The local nonlinear iteration on each subdomain is stopped if the condition,
kGX0i
ðwðkÞi;l Þk2 6 elocal-nonlinearkGX0i

ðwðkÞi;0 Þk2;
is satisfied, or if the maximum local nonlinear iteration of 25 is reached. We test different elocal-nonlinear
ranging from 10�4 to 10�6 and find that the numbers of ASPIN iterations are nearly independent of

elocal-nonlinear, but the number of local nonlinear iterations per global function evaluation, which is one

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 677
of the expensive steps in the algorithm, can be reduced by choosing a loose tolerance. Hence,

elocal-nonlinear = 10�4 is set for all test cases.

� Regular checkerboard partitions are used for our experiments. The number of subdomains is always the

same as the number of processors, np.

� The overlapping size is defined as
ovlp ¼ max
H 0x � Hx

2h
;
H 0y � Hy

2h

� �

for both interior subdomains and subdomains touching the boundary. Rectangular elements are used for

the two benchmark problems. H 0x and H 0y are defined here as the side lengths of the overlapping sub-

domain X0i in x-direction and y-direction, respectively. Similarly, Hx and Hy are defined as the side

lengths of the non-overlapping subdomain Xi in x-direction and y-direction, respectively. A graphic

example is presented in Fig. 2. We use ovlp = 2 for all test cases, except in Table 9, where we study

the effect of using different overlapping sizes.

� The local subdomain Jacobian matrix G0X0i , and the global Jacobian matrix J are formed using multi-col-

ored forward finite differences. The finite difference parameter is set at 10�8.
� We use the standard backtracking technique for both global and local nonlinear problems. The param-

eters associated with INB are: a = 10�4, kmin = 0.1 and kmax = 0.5.

5.2. A Newton–Krylov–Schwarz algorithm

We compare our algorithm with an inexact Newton based algorithm applied directly to the original non-

linear system (2.3). There are several parallel Newton–Krylov algorithms including Newton–Krylov-

Multigrid [13,31] and Newton–Krylov–Schwarz (NKS) [4,27,34]. Because of the similar data structure,
we compare only with an NKS algorithm. NKS has three main components: a Newton method as the non-

linear solver, a Krylov subspace method as the linear solver, and a Schwarz-type method as the precondi-

tioner. For the nonlinear solver, the INB described in Section 3 is employed. Three choices of the forcing

term gk are tested. Choices 1 and 2 are given by (3.1) and (3.2). We denote the constant gk = 10�6 as
Hx

H’y

H’x

Hy

h

Fig. 2. A sample mesh partition with ovlp = 2 on a rectangular mesh.

Table 1

Parameters for Choices 1 and 2

For both Choices 1 and 2

Initial forcing term g0 0.01

Maximum forcing term gmax 0.9

For Choice 2 only

Power q 2.0

Multiplication factor c 0.9

678 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
Choice 0. For the linear solver, we apply GMRES for solving each Jacobian system. To accelerate the con-

vergence of GMRES, we choose a one-level additive Schwarz method as a right preconditioner: At each

Newton iteration, find a Newton direction s(k) to satisfy
kF ðxðkÞÞ � ðJðxðkÞÞM�1k ÞðMksðkÞÞk2 6 gkkF ðxðkÞÞk2; ð5:1Þ

whereM�1k ¼

PN
i¼1R

T
X0i
J�1X0i
ðxðkÞÞRX0i

. Note that right preconditioning preserves the l2-norm so that the precon-

ditioned system (5.1) changes neither the linear residual norm nor the function norm. We use the same par-

tition and overlap as in the corresponding ASPIN algorithm. The list of parameters for Choices 1 and 2

appears in Table 1 [15,16]. We declare the convergence of INB if the condition,
kF ðxðkÞÞk2 6 enonlinearkF ðxð0ÞÞk2

is satisfied. Here enonlinear = 10�6 for all test cases. Otherwise, we claim that NKS fails. This happens if the

maximum nonlinear iteration of 100 is reached, or the backtracking fails.

5.3. Test 1: lid-driven cavity flow

We consider the incompressible lid-driven cavity flow defined on the unit square. The flow domain and

boundary conditions are shown in Fig. 3. Because the lid velocity V = 1, and the length of the lid L = 1, the

Reynolds number for this problem is 1/m. Since only Dirichlet boundary condition is specified for the veloc-

ity, the pressure is determined up to a constant. To make the pressure unique, we set its value at the lower

right corner to zero. We run the test for three uniform meshes 64 · 64, 128 · 128 and 256 · 256. The sub-
domains are obtained by partitioning the mesh uniformly as shown in Fig. 2. For this test case, we consider

2 · 2 and 4 · 4 subdomain partitions. As mentioned before, the number of processors is the same as the

number of subdomains.
L=1

1 L=1

1u =u =02

21u =1, u =0

2u =u =0 u1=u2=0

Fig. 3. Test 1: a lid-driven cavity flow problem.

Table 2

Nonlinear residuals and quantitative comparisons of the numerical solutions obtained by two methods, NKS and ASPIN

Mesh sizes Re = 103 Re = 5 · 103 Re = 104

kF ðx	ASPINÞk2
128 · 128 4.64 · 10�11 5.58 · 10�13 3.48 · 10�13

256 · 256 1.30 · 10�9 2.98 · 10�9 1.20 · 10�11

kx	NKS � x	ASPINk2=kx	NKSk2
128 · 128 1.75 · 10�7 1.11 · 10�7 3.22 · 10�9

256 · 256 6.39 · 10�7 4.62 · 10�9 2.58 · 10�7

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 679
5.3.1. Numerical verification of the computed solutions

We claim that two systems of equations are equivalent if they have the same solution. To show that the

original system and the preconditioned system are equivalent is trivial for the case of linear preconditioning,

but not so for the case of nonlinear preconditioning. In [5], Cai and Keyes proved the equivalence of two

nonlinear systems, the original system and nonlinearly preconditioned system, under certain assumptions.

However, as mentioned before, applying the equivalence theorem in [5] for a general nonlinear system

F(x) = 0, like (2.3), is not straightforward since it is difficult to check whether the assumptions hold or

not for our cases. Instead, we verify numerically that the solution of the preconditioned system (4.3) is also
the solution of the original nonlinear system (2.3).

Let x	NKS and x	ASPIN be the numerical solutions of the original and preconditioned nonlinear systems,

respectively. Here, the reference solution x	NKS is obtained by using NKS for Re = 103 and for

Re = 5 · 103 and 104 the original nonlinear system is solved by NKS with a zeroth-order Reynolds number

based continuation technique [23], since NKS itself fails to converge for such high Reynolds numbers.

x	ASPIN is obtained by using ASPIN. The relative tolerance for both NKS and ASPIN are set at 10�10.

To show that x	ASPIN is close to x	NKS, we evaluate F(x) at x ¼ x	ASPIN for several Reynolds numbers and mesh

sizes, and the values are given in Table 2. The nonlinear residuals in all cases are of order 10�9 or smaller,
which implies that x	ASPIN is a solution of F(x) = 0 for each case. Also, in the same table we show the relative

errors in l2-norm, kx	NKS � x	ASPINk2=kx	NKSk2. All values are relatively small; we believe that the minor dif-

ferences are due to the use of preconditioner-dependent stopping conditions. Hence, these quantitative

comparisons confirm our assertion that nonlinear preconditioning does not alter the solution of the non-

linear system. Figs. 4 and 5 are two typical sets of solution plots. Clearly, the streamlines in Fig. 4 and

the pressure elevations in Fig. 5 obtained from solving two systems for Re = 104 on a 256 · 256 mesh

are almost indistinguishable.

5.3.2. Choices of Smax

The choice of Smax in the re-scaling step is critical to both the robustness and the efficiency of ASPIN.

Here, the ‘‘feasible’’ values of Smax are those values for which ASPIN converges. In general, the range of

feasible values of Smax depends on some physical parameters, such as the Reynolds number, the mesh size

and the subdomain size. The optimal Smax is determined empirically so that ASPIN takes the smallest

number of global nonlinear iterations in several successful runs. Fig. 6 shows the history of nonlinear

residuals of ASPIN with different Smax for Re = 104. Note that ASPIN fails to converge when Smax > 3

in this case. From the plot, we see that although small Smax enhances the robustness of ASPIN, it slows
down the overall convergence. The number of ASPIN iterations is decreased as we increase Smax. Up to

50% nonlinear iterations can be saved if we choose the optimal Smax. Table 3 presents the feasible inter-

vals and the optimal values for Smax in the cases of a 128 · 128 mesh on 16 processors for Re = 103,

5 · 103 and 104. The data in the table is obtained by first trying a modest number of Smax values to as-

sure the convergence of ASPIN for each case, then estimating the approximate feasible intervals and the

Fig. 4. Streamlines. The original (left) and preconditioned (right) nonlinear system.

680 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
optimal values of Smax from these results. As shown in Table 3, the range of feasible Smax is wider for a

low Reynolds number flow than for a high Reynolds number flow. The sudden failure of ASPIN occurs

for Smax values greater than the optimal Smax in the cases of the two largest Reynolds numbers. In other

words, for high Reynolds number flows, choosing a feasible value of Smax to assure the convergence of

ASPIN is more difficult. In that case, it is safer to select small enough Smax, compared to the first step

length is(1)i2 to guarantee the convergence of ASPIN at the first trial, and then the performance of AS-

PIN can be improved by increasing Smax gradually. Similar phenomenon is also observed in the case of

choosing a good relaxation parameter for the Successive Over Relaxation (SOR) method. The conver-
gence of SOR typically deteriorates rapidly to the right of the optimal relaxation parameter than to

the left; consequently, it is usually better to choose a small relaxation parameter. It should be noted that

all numerical results for ASPIN presented later in this section are obtained by using the optimal values of

Smax for each problem.

5.3.3. Comparison with NKS

In Figs. 7 and 8, we compare the nonlinear residual history of ASPIN with those of NKS with three dif-

ferent choices of forcing terms. We run ten tests for Reynolds numbers ranging from 103 to 104, with an
increment of 103. All results are obtained by using a 128 · 128 mesh on 16 (4 · 4) processors. We see that

nonlinear residuals of NKS with all choices of forcing terms behave similarly. Except for a few cases with

low Reynolds number, NKS nonlinear residuals stagnate around 10�3 without any progress after about the

first 15 iterations. All of them fail to converge after 100 iterations. Different choices of forcing terms do not

help much in this particular set of tests. We should note that the success of NKS using these two adaptive

forcing terms on the lid-driven cavity problem up to Re = 104 has been reported in [34]. Several parameters

in NKS need to be well-tuned in order for the method to converge for all applications. By comparing our

implementation with [34], we find that the differences in the selections of some algorithmic parameters, such
as quality of subdomain solve (exact or inexact), the number of subdomains, the degree of overlap, and the

choices of some discretization parameters, such as the stabilization parameter, s, may affect the convergence

Fig. 5. Pressure elevations. The original (top) and preconditioned (bottom) nonlinear system.

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 681

0 5 10 15 20 25 30 35 40
10

–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

ASPIN iterations

N
on

lin
ea

r
re

si
du

al
s

S
max

=2.5

S
max

=2.0

S
max

=1.5

S
max

=1.0

S
max

=3.0

Fig. 6. History of nonlinear residuals of ASPIN with different values of Smax. A 128 · 128 mesh is used on 16 processors, Re = 104.

ASPIN with Smax = 3.0 is terminated at an earlier iteration because of the failure of backtracking.

682 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
of NKS. As we will see in the next test case, NKS with adaptive forcing terms seems sensitive to the change

in the number of processors (or subdomains). It may be interesting to study how these factors affect the

convergence and the performance of NKS. On the other hand, ASPIN converges for the whole range of

Reynolds numbers. Furthermore, we find that ASPIN preserves the local quadratic convergence of Newton

when the intermediate solution is near the desired solution.

5.3.4. Scalability of ASPIN

Scalability is an important issue in parallel computing, and the issue becomes even more significant
when we solve large scale problems with many processors. Table 4 shows that ASPIN iterations are

nearly independent of mesh size; the nonlinear iteration numbers change up or down by small fractions

when we increase the mesh size from a coarse mesh, 64 · 64, to a fine mesh, 256 · 256 on 16 (4 · 4) pro-

cessors. However, the average number of GMRES iterations increases quite a bit when we increase the

mesh size. Next, we fix the mesh size and vary the number of processors. In Table 5, we see that the

number of ASPIN iterations does not change much, while the average number of GMRES iterations in-

creases a lot when we increase the number of processors from 4 to 16 on a fixed 128 · 128 mesh. The

increase in GMRES iteration numbers is not unexpected, since we do not have a coarse space in the
preconditioner.
Table 3

Feasible values of Smax and optimal values of Smax. A 128 · 128 mesh on 16 processors for Re = 103, 5 · 103 and 104. Note that the

optimal values of Smax may or may not be unique. For example, several optimal values are in the interval [300,450] for Re = 103, while

only single optimal values are found for Re = 5 · 103 and 104

Re is(1)i2 Feasible values for Smax Optimal value for Smax

103 694 [2,600] [300,450]

5 · 103 156 [2,25] 25

104 57 [1,2.5] 2.5

0 5 10 15 20 25 30 35 40 45 50
10

–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

INB: choice 0

Newton iterations

N
on

lin
ea

r
re

si
du

al
s

Re=1.0e3 Re=3.0e3

0 5 10 15 20 25 30 35 40 45 50
10

–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

INB: choice 1

Newton iterations

N
on

lin
ea

r
re

si
du

al
s

Re=1.0e3

0 5 10 15 20 25 30 35 40 45 50
10

–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

INB: choice 2

Newton iterations

N
on

lin
ea

r
re

si
du

al
s

Re=1.0e3

Re=4.0e3

Fig. 7. History of nonlinear residuals. INB with three different forcing terms. Only converged cases are labelled.

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 683

0 5 10 15 20 25 30 35 40 45 50
10

–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

ASPIN

ASPIN iterations

N
on

lin
ea

r
re

si
du

al
s

Re=1.0e3 Re=1.0e4

Fig. 8. History of nonlinear residuals. ASPIN converges in all ten test cases.

684 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
5.3.5. Solving the subdomain nonlinear problems

Fig. 9 shows the numbers of subdomain nonlinear iterations required for different subdomains in Step 1

of Algorithm 2. In this test case, we partition the domain into 2 · 2 subdomains and number them, first

from bottom to top, and then from left to right. Note that two subdomains, X2 and X4, touch the moving
Table 4

Lid-driven cavity problem: different mesh sizes on 16 processors

Mesh sizes Re = 103 Re = 3 · 103 Re = 5 · 103 Re = 8 · 103 Re = 104

Number of ASPIN iterations

64 · 64 11 12 15 17 18

128 · 128 9 13 11 16 18

256 · 256 12 13 14 18 15

Average number of GMRES iterations

64 · 64 86 88 92 97 97

128 · 128 129 128 131 137 140

256 · 256 190 188 194 197 197

Table 5

Lid-driven cavity problem: different number of processors on a 128 · 128 mesh

np Re = 103 Re = 3 · 103 Re = 5 · 103 Re = 8 · 103 Re = 104

Number of ASPIN iterations

2 · 2 = 4 11 10 13 19 19

4 · 4 = 16 8 13 11 16 18

Average number of GMRES iterations

2 · 2 = 4 67 69 71 73 74

4 · 4 = 16 129 128 131 137 140

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

ASPIN iterations

N
um

be
r

of
 s

ub
do

m
ai

n
no

nl
in

ea
r

ite
ra

tio
ns

Ω
1

Ω
2

Ω
3

Ω
4

Fig. 9. Numbers of subdomain nonlinear iterations required for different subdomains in Step 1 of Algorithm 2. A 128 · 128 mesh is

tested on 4 processors, and Re = 104.

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 685
lid. ASPIN converges in 19 iterations. We observe that at the beginning of ASPIN iterations, ASPIN has

difficulty solving the subdomain nonlinear problem by INB with a zero initial guess on the subdomain X4,

where a boundary layer and singularity are present for Re = 104. INB starts to stall after about 15 iterations

and the nonlinear residual cannot be reduced to the order of 10�4 on X4 because the size of the subdomain

problem is too large. We may resolve this situation by increasing the number of subdomains; there are no
unsuccessful subdomain nonlinear iterations observed as we use 4 · 4 subdomains to solve the same prob-

lem. After 7 ASPIN iterations, the nonlinearities of each subdomain problem become more balanced, and

only about up to 4 Newton iterations are needed to solve each subdomain problem.

5.4. Test 2: flow passing a backward-facing step

We consider another benchmark problem often used to test the correctness and performance of numer-

ical algorithms. For the Eq. (2.1) defined on a long channel [0,30] · [�0.5,0.5], no-slip conditions are
imposed on the top and bottom walls, as well as the lower half of the left wall, i.e., u1 = u2 = 0. Detailed

geometry and boundary condition information appears in Fig. 10. A fully developed parabolic velocity pro-

file is specified at the inlet boundary, which is given by u1(y) = 24y(0.5 � y) for 0 6 y 6 0.5. Here, we have a

maximum velocity of 1.5 and an average velocity of uave = 1 at the inlet boundary. The Reynolds number

for this problem is defined as Re = VaveL/m, where Vave is the average velocity at the inlet boundary (here,
L = 1

u = 0

u = u =021

u = u =021

1

2

σ n=

u = 24y(0.5–y)1

0
2u = u =0

30

Fig. 10. Test 2: a backward-facing step problem.

Ω
Ω
Ω

Ω
Ω

Ω
Ω

Ω
Ω
Ω
Ω

Ω
Ω
Ω
Ω

Ω
Ω
Ω
ΩΩ

2
1

3

4

5
6
7
8

10
9

11
12

13
14
15
16

17
18
19
20

Fig. 11. Backward facing step problem: subdomain numbering.

686 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
Vave = 1) and L is the channel height (here, L = 1). We apply two uniform meshes (600 · 20 and 1200 · 40).

Two subdomain partitions are considered: 10 (5 · 2) and 20 (5 · 4) processors. The subdomain ordering for

the 20-processor case is shown in Fig. 11.

5.4.1. Scalability of NKS and ASPIN

First, we look at the performance of NKS with three choices of forcing terms when we vary the num-

ber of processors and the mesh size. In Table 6, unlike the lid-driven cavity flow problem, we observe

that certain choices of forcing term do enhance the robustness of NKS in some cases. For example,
NKS with Choice 2 converges for all tested Reynolds numbers on 10 (5 · 2) and 20 (5 · 4) processors,

while NKS with Choice 0 fails to converge when the Reynolds number is higher than 5 · 102. Further-

more, the average number of GMRES iterations for NKS with Choice 2 is quite small compared with

Choice 0 when the convergence can be achieved. However, NKS seems quite sensitive to the changes

in the number of processors: The number of Newton iterations for Choice 2 nearly doubles when we in-

crease the number of processors from 10 to 20 in the cases of high Reynolds number. Meanwhile, the

number of successes for Choice 1 is reduced from 5 to 2 when we use a stronger preconditioner for

the Jacobian system. In Table 7, we see that refining the mesh increases neither the number of Newton
iterations nor the average number of GMRES iterations significantly. For high Reynolds numbers, such

as Re = 7 · 102 and 8 · 102, NKS with Choice 1 and 2 on a fine mesh requires even fewer numbers of

nonlinear iterations than on a coarse mesh.

Next, we study the scalability of ASPIN for the backward-facing step problem. Table 8 shows how the

number of ASPIN iterations and the average number of GMRES iterations change when we increase

the mesh size from a coarse mesh, 600 · 20, to a fine mesh, 1200 · 40 on 20 (5 · 4) processors. We see that

the average number of ASPIN iterations remains the same in the case of Re = 100. However, if Re = 800,
Table 6

Backward-facing step problem: comparison of NKS with three choices of forcing terms. The number of Newton iterations and the

average number of GMRES iterations for different Reynolds numbers. 1200 · 40 elements on 5 · 2 and 5 · 4 processors. ‘‘–’’ indicates

a failure of convergence

Choice number: 0 1 2

np 5 · 2 5 · 4 5 · 2 5 · 4 5 · 2 5 · 4

Number of nonlinear iterations

Re = 1 · 102 6 6 7 7 6 6

Re = 5 · 102 – – – 20 14 28

Re = 6 · 102 – – 17 29 19 37

Re = 7 · 102 – – – 44 22 50

Re = 8 · 102 – – – 43 27 57

Average number of GMRES iterations

Re = 1 · 102 62 119 20 44 30 48

Re = 5 · 102 – – – 23 14 25

Re = 6 · 102 – – 13 29 12 24

Re = 7 · 102 – – – 35 14 25

Re = 8 · 102 – – – 31 19 28

Table 9

Backward-facing step problem: varying the overlapping size on a 120 · 40 mesh

ovlp Re = 102 Re = 5 · 102 Re = 6 · 102 Re = 7 · 102 Re = 8 · 102

Number of ASPIN iterations

2 5 18 19 23 39

4 5 12 16 15 26

6 5 9 11 12 13

Average number of GMRES iterations

2 118 127 132 142 130

4 83 88 90 97 94

6 67 77 80 83 84

Table 7

Backward-facing step problem: comparison of NKS with three choices of forcing terms. The number of Newton iterations and the

average number of GMRES iterations for different Reynolds numbers. 600 · 20 and 1200 · 40 meshes on 20 (5 · 4) processors. ‘‘–’’

indicates a failure of convergence

Choice number: 0 1 2

Mesh sizes 600 · 20 1200 · 40 600 · 20 1200 · 40 600 · 20 1200 · 40

Number of nonlinear iterations

Re = 1 · 102 6 6 7 7 6 6

Re = 5 · 102 – – 26 20 22 28

Re = 6 · 102 – – 35 29 33 37

Re = 7 · 102 – – 61 44 63 50

Re = 8 · 102 – – 57 43 72 57

Average number of GMRES iterations

Re = 1 · 102 62 119 41 44 43 48

Re = 5 · 102 – – 22 23 17 25

Re = 6 · 102 – – 28 29 16 24

Re = 7 · 102 – – 23 35 20 25

Re = 8 · 102 – – 23 31 20 28

Table 8

Backward-facing step problem: different mesh sizes on 20 (5 · 4) processors

Mesh sizes Re = 102 Re = 5 · 102 Re = 6 · 102 Re = 7 · 102 Re = 8 · 102

Number of ASPIN iterations

600 · 20 5 9 15 21 18

1200 · 40 5 18 19 28 39

Average number of GMRES iterations

600 · 20 91 93 94 99 98

1200 · 40 118 127 132 134 136

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 687
the iteration number doubles as we increase the mesh size. The average number of GMRES iterations

increases for all values of Reynolds number as expected. In Table 9, we observe that increasing the over-

lapping size can reduce both ASPIN iterations and GMRES iterations when the Reynolds number is high.

Table 10 shows that the number of ASPIN iterations is not sensitive to the number of processors, while the

Table 10

Backward-facing step problem: different number of processors with the same mesh 1200 · 40

np Re = 102 Re = 5 · 102 Re = 6 · 102 Re = 7 · 102 Re = 8 · 102

Number of ASPIN iterations

5 · 2 = 10 5 12 20 27 35

5 · 4 = 20 5 18 19 28 39

Average number of GMRES iterations

5 · 2 = 10 62 68 69 71 72

5 · 4 = 20 118 127 132 134 130

Table 11

Backward facing step problem: total number of subdomain nonlinear iterations; 1200 · 40 mesh, 5 · 4 subdomains on 20 processors

Subdomain Re = 100 Re = 500 Re = 700 Re = 800

X1 8 38 74 109

X2 11 46 85 127

X3 13 61 124 182

X4 13 67 147 238

X5 5 40 78 115

X6 5 43 78 111

X7 5 43 77 109

X8 5 38 78 118

X9 4 18 42 59

X10 4 25 45 63

X11 4 24 46 71

X12 4 18 45 67

X13 4 15 26 38

X14 4 17 36 54

X15 4 15 39 56

X16 4 15 26 38

X17 6 28 51 74

X18 6 29 52 76

X19 6 28 55 75

X20 6 28 51 74

688 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
average GMRES iterations increase a lot when we increase the number of processors from 10 to 20 on a

fixed 1200 · 40 mesh.

5.4.2. Solving the subdomain nonlinear problems

In Table 11, we compare the numbers of Newton iterations for solving the subdomain nonlinear prob-

lems. In this test case, we partition the domain into 5 · 4 subdomains and number them naturally, first from

bottom to top, and then from left to right. See Fig. 11. Note that the inlet boundary is shared by two sub-

domains X3 and X4; the outlet boundary is shared by four subdomains, X17, X18, X19 and X20. From Fig. 12,
we observe that for high Reynolds number flows there are two singularities within subdomains from X1 to

X4 and the pressure changes significantly in subdomains X3 and X4 compared with others such as the sub-

domains from X15 to X20. As expected, more Newton iterations are needed in the subdomains X3 and X4,

about four times as many as in other smooth regions.

0 6 12 18 24 30
0

1
Re=100

0 6 12 18 24 30
0

1
Re=500

0 6 12 18 24 30
0

1
Re=700

0 6 12 18 24 30
0

1
Re=800

Fig. 12. Backward-facing step problem: pressure contours for different Reynolds numbers. The solutions are obtained using ASPIN on

a 1200 · 40 mesh and 5 · 4 processors.

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 689
6. Conclusions and remarks

Finding a fast, robust and scalable solver for incompressible Navier–Stokes equations is one of the key

research areas in computational fluid dynamics. Several important progresses have been made in this area,

such as [34]. In this paper, we developed a fully parallel nonlinearly preconditioned inexact Newton method

for solving incompressible Navier–Stokes equations in the primitive variable form. The nonlinear precon-

ditioner is constructed using the overlapping additive Schwarz domain decomposition method. A PETSc

based parallel software package was developed and tested for the two-dimensional incompressible
Navier–Stokes equations discretized with a stabilized Q1 � Q1 finite element method. From the numerical

experiments on two benchmark problems including a lid-driven cavity flow problem and a backward-facing

step problem, we concluded that the new method is more robust than the commonly used inexact Newton

method with backtracking for high Reynolds number flows. Some parallel scalability results were also given

for a moderate number of processors. Finally, it should be noted that since the global function evaluation

of ASPIN is much more expensive than that of NKS, ASPIN is intended for problems that NKS fails to

converge or experiences unacceptably slow convergence.
Acknowledgements

We thank the PETSc group of the Argonne National Laboratory for their software support of the re-

search, and L.P. Franca and S.F. McCormick for many helpful discussions. We also thank the anonymous

referees for their valuable suggestions.
References

[1] V.F. DE Almeida, J.J. Derby, Construction of solution curves for large two-dimensional problems of steady-state flows of

incompressible fluids, SIAM J. Sci. Comput. 22 (2000) 285–311.

690 F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691
[2] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual,

ANL-95/11 – Revision 2.1.5, Argonne National Laboratory, 2002.

[3] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convective dominated flows with particular

emphasis in the incompressible Navier–Stokes equations, Comput. Meth. Appl. Mech. Eng. 32 (1982) 199–259.

[4] X.-C. Cai, W.D. Gropp, D.E. Keyes, R.G. Melvin, D.P. Young, Parallel Newton–Krylov–Schwarz algorithms for the transonic

full potential equation, SIAM J. Sci. Comput. 19 (1998) 246–265.

[5] X.-C. Cai, D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput. 24 (2002) 183–200.

[6] X.-C. Cai, D.E. Keyes, L. Marcinkowski, Nonlinear additive Schwarz preconditioners and applications in computational fluid

dynamics, Int. J. Numer. Meth. Fluids 40 (2002) 1463–1470.

[7] X.-C. Cai, D.E. Keyes, D.P. Young, A nonlinear additive Schwarz preconditioned inexact Newton method for shocked duct

flows, in: Proceedings of the 13th International Conference on Domain Decomposition Methods, France, October 9–12,

2000.

[8] T.S. Coffey, C.T. Kelley, D.E. Keyes, Pseudo-transient continuation and differential-algebraic equations, SIAM J. Sci. Comput.

25 (2003) 553–569.

[9] T.F. Coleman, J.J. Moré, Estimation of sparse Jacobian matrices and graph coloring problem, SIAM J. Numer. Anal. 20 (1983)

209–243.

[10] M. Dryja, W. Hackbusch, On the nonlinear domain decomposition method, BIT (1997) 296–311.

[11] J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear EquatioSIAM, SIAM, Philadelphia,

1996.

[12] R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400–408.

[13] M. Dumett, P. Vassilevski, C.S. Woodward, A multigrid method for nonlinear unstructured finite element elliptic equations,

SIAM J. Sci. Comput. 2003, submitted.

[14] H.C. Elman, V.E. Howle, J.N. Shadid, R.S. Tuminaro, A parallel block multi-level preconditioner for the 3D incompressible

Navier–Stokes equations, J. Comput. Phy. 187 (2003) 504–523.

[15] S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods, SIAM J. Opt. 4 (1994) 393–422.

[16] S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput. 17 (1996) 16–32.

[17] L.P. Franca, S.L. Frey, Stabilized finite element method: II. The incompressible Navier–Stokes equation, Comput. Meth. Appl.

Mech. Eng. 99 (1992) 209–233.

[18] L.P. Franca, S.L. Frey, T.J.R. Hughes, Stabilized finite element method: I. Application to the advective–diffusive model, Comput.

Meth. Appl. Mech. Eng. 95 (1992) 253–276.

[19] D.K. Gartling, A test problem for outflow boundary conditions- flow over a backward-facing step, Int. J. Numer. Meth. Fluids 11

(1990) 953–967.

[20] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solution for incompressible flow using the Navier–Stokes equations and the multigrid

method, J. Comput. Phys. 48 (1982) 387–411.

[21] P.M. Gresho, D.K. Gartling, J.R. Torczynski, K.A. Cliffe, K.H. Winters, T.J. Garratt, A. Spence, J.W. Goodrich, Is the steady

viscous incompressible two-dimensional flow over a backward facing step at Re = 800 stable, Int. J. Numer. Meth. Fluids 17

(1993) 501–541.

[22] M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academics Press, New York, 1989.

[23] M.D. Gunzburger, J. Peterson, Predictor and steplength selection in continuation methods for the Navier–Stokes equations,

Comput. Math. Appl. 22 (1991) 73–81.

[24] S.K. Hannani, M. Stanislas, P. Dupont, Incompressible Navier–Stokes computation with SUPG and GLS formulations – a

comparison study, Comput. Meth. Appl. Mech. Eng. 124 (1995) 153–170.

[25] D. Hendriana, L.J. Bethe, On upwind methods for parabolic finite elements in incompressible flows, Int. J. Numer. Meth. Eng. 47

(2000) 317–340.

[26] C.T. Kelley, D.E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J. Sci. Comput. 35 (1998) 508–523.

[27] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193

(2004) 357–397.

[28] A. Klawonn, L. Pavarino, Overlapping Schwarz methods for mixed linear elasticity and Stokes problems, Comput. Meth. Appl.

Meth. Eng. 165 (1998) 233–245.

[29] W. Layton, H.K. Lee, J. Peterson, Numerical solution of the stationary Navier–Stokes equations using a multilevel finite element

method, SIAM J. Sci. Comput. 20 (1998) 1–12.

[30] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

[31] M. Pernice, M.D. Tocci, A multigrid-preconditioned Newton–Krylov method for the incompressible Navier–Stokes equations,

SIAM J. Sci. Comput. 23 (2001) 398–418.

[32] J.N. Reddy, D.K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Florida, 2000.

[33] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci.

Stat. Comp. 7 (1986) 856–869.

F.-N. Hwang, X.-C. Cai / Journal of Computational Physics 204 (2005) 666–691 691
[34] J.N. Shadid, R.S. Tuminaro, H.F. Walker, An inexact Newton method for fully coupled solution of the Navier–Stokes equations

with heat and mass transport, J. Comput. Phys. 137 (1997) 155–185.

[35] B.F. Smith, P. Bjørstad, W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential

Equations, Cambridge University Press, Cambridge, 1996.

[36] R.S. Tuminaro, H.F. Walker, J.N. Shadid, On backtracking failure in Newton–GMRES methods with a demonstration for the

Navier–Stokes Equations, J. Comput. Phys. 180 (2002) 549–558.

[37] A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory, Springer, 2004.

	A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incompressible Navier -- Stokes equations
	Introduction
	Incompressible Navier ndash Stokes equations and Galerkin least squares finite element discretization
	Review of inexact Newton with backtracking
	ASPIN algorithm for incompressible Navier ndash Stokes equations
	Nonlinear additive Schwarz preconditioning
	Computing the Jacobian of the preconditioned system
	Details of ASPIN

	Numerical results
	Selection of parameters for ASPIN
	A Newton ndash Krylov ndash Schwarz algorithm
	Test 1: lid-driven cavity flow
	Numerical verification of the computed solutions
	Choices of Smax
	Comparison with NKS
	Scalability of ASPIN
	Solving the subdomain nonlinear problems

	Test 2: flow passing a backward-facing step
	Scalability of NKS and ASPIN
	Solving the subdomain nonlinear problems

	Conclusions and remarks
	Acknowledgements
	References

